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Goals for This Discussion

 Brief Introduction to New Technologies
for Studying the 215t Century City

* Urban Systems in Broader Perspective

* The Critical Role of Nature in Managing
an Increasingly Urban Planet



A CATALYST FOR
INTERDISCIPLINARY
SCIENTIFIC RESEARCH
AND DISCOVERY
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Decade for Science (2005-2015)
asrc.cuny.edu

One Capstone of CUNY’s
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A Planetary-Scale Experiment and

The Urban Century

Emblem of the Anthropocene

« 2007 was the urban-rural (50-50) tipping point
* |n 2016:

— >500 cities with 1M+ people and 20% of
the world’s population lives there

— 31 Megacities with 10M+ people, with 2/3
In poor countries

— More than 55% are vulnerable to natural disasters

By 2050:

— 2/3 or more of the world will be urban

population ~ 7B equal to world population i

Source: UNDESA, 2014 & Update






fingerprint

To study, we need.......

A unique combination of
environmental surveillance,
chemistry, biology, human
health, GIS, systems
dynamics and modeling, big
data analysis




FOOD WATER FOOD  ENERGY

Indicators: « Impact of food production and « Use of waste food for energy
Quality, sustainable food waste treatment on water production

production, security of quality * Impact of urban farming on
supply, land use, energy + Climate change impact on food transport and processing energy
footprint, CO, footprint production and water demand

WATER  FOOD WATER WATER  ENERGY

* Water treatment for irrigation Indicators: « Energy requirements in wastewater

« Water treatment for food process Water quality, water treatment for different water quality

water —_ quantity and long term and possible reuse

« Water treatment for potable water v sustainability, resilience, « Wastewater sewage sludge treatment
land use, water footprint for thermal energy generation,

phosphorous recovery

ENERGY FOOD ENERGY  WATER ENERGY

« Smart micro grids for resilient + Smart grids and renewables for Indicators:

food refrigeration chain and food resilient water supply and treat- CO, emissions,
logistics ment reliability and resilience,
« Demand side management potential « Wastewater plant efficiency and de- land use footprint

of food chain refrigeration (supemarkets) mand side management (DSM), reuse
« Energy efficiency of food production « Energy efficiency of water supply

A Collaboration of the
University of Stuttgart and
City University of NY




Example of consortium-based laboratory design Multi-
scale Air-Climate-Energy Observatory (MACEOQO)

Locations and pictures of various instruments of the NYCMetNet

VL o ) (A) Temperature, humidity and
E liquid water vertical profiler

(to 2 km).
= *\)(9 ' (B) & (F) Sodar wind profiler to
= BC(TH 300/450 m.
i (C) Radar wind profiler vertical
: profiler (to 2 km).

(D) CCNY Aerosol Raman
lidar (to 10 km) and Vaisala
ceilometer.

(E) Skyscraper-mounted
weather stations.

(F) Not shown: Portable eye
safe Doppler Lidar,
radiation flux instruments,
Nephalometer & other
particulate matter stations



TaxiVis: Comparing Neighborhoods

SV A AV AA DAY or “Pollution
S Fingerprint” of
=y =4 |  pickups the City

ol ol (especially when
linked to per vehicle
carbon and pollutant
emissions)

Collaboration w/: Huy Vo, CCNY



MEMS & SENSORS : THE 5 SENSES...
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MEMS &
Sensors
devices bring
increased
functionalities
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Getting Spain’s protesters off the plazas

The 2 Obama, Bibi and peace
Economlst The costly war on cancer

How the brain drain reduces poverty

A soft landing for China
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RCP2.6 RCP8.5
Change in average surface temperature (1986-2005 to 2081-2100)

Global urban population expenenci emperature ranges for RCP4.5 SSP_3
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Collaboration with P. Marcotullio (Hunter)



Strategies Needed to Optimize Water Use and Infrastructure
Management under Climate and Development Scenarios

1000 gal/day

(-1 201 -300
m2-10 301 - 500

= W11 -25 501 - 1000
26-50 m™=1001-10000

Domestic
Water Supply
& Use Models

Dams & Reservoirs
Prolific, Uncoordinated
Regional Runoff Control
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===BASE-CC ===BASE-Dr ====INFRA-CC INFRA-Dr
Modern water 1960s vintage
supply systems technology

From: Vorésmarty et al., in prep.




Optimizing Environmental and Social Benefits through
Demand-Side-Management

Social Strategy 1 (SS1):

Lowers air pollution from the most
polluting power plants
(mostly in PA)

Carbon Emission Strategy:

Lowers power mainly from PA —
where there is a large
use of coal

Power Plant Status

7/ fj{f

Social Strategy 2 (SS2):
Lowers air pollution from
harmful power plants nearest
populated urban centers

Different optimization
targets require different
curtailment strategies and
yield clearly different
societal benefits

c O @ @

(from Miara et al. 2014)



Virtual Water in Food Trade

s Ll
- - &

E—

Net virtual water import
(Billion m*/year)
TOTAL
Il 95--75
7535
B 35--15
B -15--5
[-5-0
[ lo-5
s-10
B 10-5
I 50- 100
I 100 - 306

R iEs
Hoff et al. 2014, HESS




Manage Using Only Traditional Infrastructure?

AYAAAS

Particularly
relevant to
the SDGs
and the
palpable
‘tension” as
the water
targets
were
formulated

WATER

Water security: Gray or green?




One Green Infrastructure Service: Carbon Sequestration

TEM modeling (3 arc-minute)
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Downstream
Population
Distributed to
Upstream Water
Source Areas

Volumetric
Water Services

People / km2
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Downstream
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Threat Interval

Incident Threat
Condition
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- Ratio IBF 2050/ 2000%,,_,_% B Traditionally Engmeered Solutions
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Global Ecological Footprint  setues
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1960-2008
B Ecological Footprint

2008-2050, Scenarios
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y-axis: number of planet earths, x-axis: years
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Additional information:
* http://environment.asrc.cuny.edu/
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Contact:
CrossRoads <crossroads@ccny.cuny.edu>

Environmental [he E'tf
CrossRoads | = t.Jfr nversity
Initiative T New York




